Air supplied to a pneumatic system is supplied through the C. Actuator
Explanation
Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid. Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.
From the above statement it is clear that Air supplied to a pneumatic system is supplied through the Actuator
Answer:
W=2 MW
Explanation:
Given that
COP= 2.5
Heat extracted from 85°C
Qa= 5 MW
Lets heat supplied at 150°C = Qr
The power input to heat pump = W
From first law of thermodynamics
Qr= Qa+ W
We know that COP of heat pump given as



W=2 MW
For Carnot heat pump


2.5 T₂ - 895= T₂
T₂=596.66 K
T₂=323.6 °C
Answer and Explanation:
The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by 
The back emf of the DC motor is given by
Here N is speed of the motor ,P signifies the number of poles ,Z signifies the the total number of conductor and A is number of parallel paths
As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor
Answer:
The part of the system that is considered the resistance force is;
B
Explanation:
The simple machine is a system of pulley that has two pulleys
The effort, which is the input force at A gives the value of the tension at C and D which are used to lift the load B
Therefore, we have;
A = C = D
B = C + D = C + C = 2·C
∴ C = B/2
We have;
C = B/2 = A
Therefore, with the pulley only a force, A equivalent to half the weight, B, of the load is required to lift the load, B
The resistance force is the constant force in the system that that requires an input force to overcome in order for work to be done
It is the force acting to oppose the sum of the other forces system, such as a force acting in opposition to an input force
Therefore, the resistance force is the load force, B, for which the input force, A, is required in order for the load to be lifted.