Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
![a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}](https://tex.z-dn.net/?f=a%5B%281%29e%5E%7B-6t%7D-6te%5E%7B-6t%7D%5D%3D0%5C%5C%5C%5C1-6t%3D0%5C%5C%5C%5Ct%3D%5Cfrac%7B1%7D%7B6%7D)
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):

hence, the maximum speed is v_max = ((1/6)e^-1)a
Answer:
Coulomb's law is:

First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:
N = (1/{e0})*C^2/m^2
then we have:
{e0} = C^2/(m^2*N)
And we know that N = kg*m/s^2
then the dimensions of e0 are:
{e0} = C^2*s^2/(m^3)
(current square per time square over cubed distance)
And knowing that a Faraday is:
F = C^2*S^2/m^2
The units of e0 are:
{e0} = F/m.
The weight of the box with the given mass on Earth is 1470 Newtons.
Given the data in the question;
- Mass of box;

- Weight of box;

<h3>Weight</h3>
Weight is the force acting on the mass of a particular object or particle due to gravity. It is the gravitational force acting on an object with mass. It is measured in newtons. It is expressed as;

Where m is mass of object and g is acceleration due to gravity on earth (
)
To find the weight of the box, we substitute our values into the expression above;

Therefore, the weight of the box with the given mass on Earth is 1470 Newtons.
Learn more about weight: brainly.com/question/19540959
Answer:
Yes, because everything bounce off in every surface around any object.
Explanation: