Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Answer:
A body travels 10 meters during the first 5 seconds of its travel,and a total of 30 meters over the first 10 seconds of its travel
20miles / 5sec = 4miles /sec would be the average speed for the last 20 m
Explanation:
The answer is 4 m/s.
In the first 5 seconds, a body travelled 10 meters. In the first 10 seconds of the travel, the body travelled a total of 30 meters, which means that in the last 5 seconds, it travelled 20 meters (30m + 10m).
The relation of speed (v), distance (d), and time (t) can be expressed as:
v = d/t
We need to calculate the speed of the second 5 seconds of the travel:
d = 20 m (total 30 meters - first 10 meters)
t = 5 s (time from t = 5 seconds to t = 10 seconds)
Thus:
v = 20m / 5s = 4 m/s
PLEASE GIVE BRAINIEST!! HOPE THIS HELPS
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

Answer:
There isnt enough in your question to answer the question bro, like we need a picture or something bro.
Explanation:
Answer:
bhi jo bhi of gp oh oh gi IG 7u to uff do if goo td to yd do FP ae rt 7g hi pic vo icon
Explanation:
bh hi h bhi vc di oh x At jb jo iv hp of di of dr hi o hc x gh ki vc hi jo