Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Mars.
Water exists as small amounts of ice on Mars and as water vapor. It is suspected that Mars used to have flowing water on it, but that there is none left now.
Answer:
$4.2
Explanation:
Given data
Power= 700W
time= 10 hours
Cost per kilowatt hours is cents $0.20
Let us find the number of hours in a month
=24*30
=720 hours
Energ= power*time
Energy= 700/1000*30
Energy= 7*3
Enery= 21 kwh
1 kwh= 0.2
21kwh= x
cross multiply
x=21*0.2
x= $4.2
Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V
A place that is cold because of an increase in altitude has a mountain area climate or simply, mountain climate. An area that is high in altitude typically has a colder temperature because of the increased amount of rainfall they have. Also, air tends to cool as it rises in temperature.