1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fomenos
3 years ago
10

Here is just the picture

Physics
1 answer:
nadya68 [22]3 years ago
3 0

Answer:

I think the second

Explanation:

You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
What are the factor that affect the efficiency of a pulley​
alukav5142 [94]

Answer:

Tension in the chains - In a chain drive, technically, you have a closed-chain (which has no end) going around 2 pulley or gears; looking closely you have 2 parallel chains going in opposite direction. If kept in horizontal direction, the one below the other is the slack side and the other the tight side. The tension on the upper or tight side is more than the slack side. So you need to keep in mind to keep your chain drive tight so that there is no loss or rotation or lags.

Sizes of the pulley/gear - The chain will be warped around a pair of pulley or gear. The sizes of these pulley/gear will also determine the efficiency of the chain drive (consider one big and one small)

Number of pulley/gear - If the number of pulley/gear is more and chain wrapped on it with little complexity will result in decrease in efficiency because of extra tension.

Length of the chain drive - You cannot have much too long chain drive. It will make your slack side more heavy because the end are further away. You have to apply more power and possibilities of lag increases decreasing efficiency. In an ideal situation, this won't happen, but this world isn't ideal.

Friction between chains & pulley/gear - If you have studied gears (involving its teeth), you will come to know that there is friction offered on the two meeting surfaces.

Angle of contact - This would have been explained better with a diagram. Although, if you are familiar with the terms you won't have difficulty understanding. Angle of contact is the angle the chain forms with the pulley/gear at the point of contact with the center of the pulley. The angle of contact should not be too small, or else the things will be slippery.

Explanation:

8 0
3 years ago
Which best describes how geothermal energy is used to make electricity?. . A.. Rocks are split to release energy that drives a s
In-s [12.5K]
Answer is b that is  Heat energy from below the ground converts water to steam to drive a steam turbine attached to an electrical generator.. . 
6 0
3 years ago
Although he did not present a mechanism, what were the key points of Alfred Wegener’s proposal for the concept of continental dr
valentinak56 [21]

Answer: Alfred Wegener provided some of the important points that supported the theory of continental drift. They are as follows-

  1. The continents were once all attached together, and this can be proved by studying the coastlines of some of the continents that perfectly matches with one another.
  2. The appearance of similar rock types and similar fossils (including both animals and plants) has also contributed much information that continents were once all together.
4 0
4 years ago
Which of the following does not change the resistance of a wire?
ivanzaharov [21]
Number 1. The medium around the wire
3 0
3 years ago
Other questions:
  • If the total number of earthquakes annually averages 14,500 approximately how many are magnitude 5 or higher? and show work.
    15·1 answer
  • William tell shoots an apple from his son's head. the speed of the 130-g arrow just before it strikes the apple is 24.8 m/s, and
    13·1 answer
  • Soil conservation involves protecting _______ and preventing _______.
    9·2 answers
  • What do you mean by acceleration due to gravity? ​
    6·1 answer
  • how do you describe and determine the direction of the magnetic field produced by an electric current?
    14·1 answer
  • Erica forgot to put gas in her car (again) for two weeks. The graph below shows the last few seconds of her car being stalled al
    13·1 answer
  • A 1-kilogram object is thrown horizontally and a 2-kilogram object is dropped vertically at
    13·1 answer
  • An oscillator with frequency f = 2.1×10^(12) Hz (about typical for a greenhouse gas molecule) is in equilibrium with a thermal r
    11·1 answer
  • Solids, liquids, and gases are very often depicted as groups of particles inside containers of fixed shape and dimension.
    7·1 answer
  • ____________________ (is/are) one type of tectonic event captured in geologic maps.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!