Answer:
λ = 2.7608 x 10⁻⁷ m = 276.08 nm
Explanation:
The work function of a metallic surface is the minimum amount of photon energy required to release the photo-electrons from the surface of metal. The work function is given by the following formula:
Work Function = hc/λ
where,
Work Function = (4.5 eV)(1.6 x 10⁻¹⁹ J/1 eV) = 7.2 x 10⁻¹⁹ J
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = longest wavelength capable of releasing electron.
Therefore,
7.2 x 10⁻¹⁹ J = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(7.2 x 10⁻¹⁹ J)
<u>λ = 2.7608 x 10⁻⁷ m = 276.08 nm</u>
Thank you for posting your question here at brainly. A mass of m moves with 2V towards in the opposite direction of a mass, 4m moving at a speed of V, the speed of m was 2/5V and the mass of 4m was 7.5V. I hope it helps.
Answer:
a) q = 39.29 cm
, b) h ’= - 3.929 cm the image is inverted and REAL
Explanation:
For this exercise we will use the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length of the salad bowl, p and q are the distance to the object and the image
The metal salad bowl behaves like a mirror, so its focal length is
f = R / 2
f = 44/2
f = 22 cm
a) Suppose that the distance to the object is p = 50 cm, let's find the distance to the image
1 / q = 1 / f - 1 / p
1 / q = 1/22 - 1/50
1 / q = 0.0254
q = 39.29 cm
b) to calculate the size of the image we use the equation of magnification
m = h’/ h = - q / p
h ’= - q / p h
h ’= - 39.29 / 50 5
h ’= - 3.929 cm
the negative sign means that the image is inverted
as the rays of light pass through the image this is REAL
The correct answer is: C. It is the point beyond which neither light nor anything else can escape.