Answer:
1083.173 km
Explanation:
Speed of longitudinal waves = 9.1 km/s
Speed of transverse waves = 5.7 km/s
Time taken by the longitudinal wave is t
Time taken by the transverse wave is t+71
Distance = Speed × Time
Distance traveled by the longitudinal wave

Distance traveled by the transverse wave

Since both distances are equal

The time taken by the longitudinal wave is 119.03 seconds
Distance traveled by the longitudinal wave

The earthquake is 1083.173 km away
Answer:
Force of Rope = 122.5 N
Force of Rope = 480.2N
Explanation:
given data
length = 3.00 m
mass = 25.0 kg
clown mass = 79.0 kg
angle = 30°
solution
we get here Force of Rope on with and without Clown that is
case (1) Without Clown
pivot would be on the concrete pillar so Force of Rope will be
Force of Rope × 3m = (25kg)×(9.8ms²)×(1.5m)
solve it and we get
Force of Rope = 122.5 N
and
case (2) With Clown
so here pivot is still on concrete pillar and clown is standing on the board middle and above the centre of mass so Force of Rope will be
Force of Rope × 3m = (25kg+73kg)×(9.8ms²)×(1.5m)
solve it and we get
Force of Rope = 480.2N
Answer:


Explanation:
During this process the mass
will be considered constant. We start from a radius
and a period
. The final period is
.
Angular momentum <em>L</em> is conserved in this process. We can use the formula
, where I is the momentum of inertia (which for a solid sphere is
) and
is the angular velocity, so we can write the star's angular momentum as:

Since
we have:

Which can be simplified as:

Which means:

Which for our values is:

And we calculate the speed of a point on the equator by dividing the final circumference over the final period:

Answer:
<h2>6.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>6.67 m/s²</h3>
Hope this helps you