Answer:
The identity does not matter because the variables of Boyle's law do not identify the gas.
Explanation:
The ideal gas law confirms that 22.4 L equals 1 mol.
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer:
The independent variable is graphed on the x-axis. The dependent variable, which changes in response to the independent variable, is graphed on the y-axis. Controlled variables are usually not graphed because they should not change.
Answer:
molarity of the KI solution = 0.04 mol/L
Explanation:
Molarity (M) is the concentration of a solution expressed as the number of moles of solute per liter of solution.
The law that we can applied to calculate the M is:
M = n / V
n - number of moles
V- volume of the solution (liters)
Then insert in the equation the values from the question;
M = 0.082 mol / 2.03 L = 0.04 mol/L
Answer:
Option C. 1.60x10^26 molecules
Explanation:
Avogadro's hypothesis proved that that 1 mole of any substance contains 6.02x10^23 molecules.
From the above, we understood that 1 mole of CCl4 contains 6.02x10^23 molecules.
If 1 mole of CCl4 contains 6.02x10^23 molecules,
then, 265 moles of CCl4 will contain = 265 x 6.02x10^23 = 1.60x10^26 molecules
From the calculation made above, 265 moles of CCl4 contains 1.60x10^26 molecules.