Gasses are buoyant enough to float long distances.
The property best used when determining the strength of an ionic bond in a solid is:
LATTICE ENERGY
The lattice energy is the energy released during the deposition of gaseous ions of opposite charges. Deposition is the transformation of gas to solid.
Explanation:
The main types of solids are ionic, molecular, covalent, and hard. Ionic solids consist of absolutely and negatively energized ions held concurrently by electrostatic forces; the power of the bonding is indicated in the lattice energy. Ionic solids manage to have high melting points and are fairly hard. lattie energy is a stratagem of the energy received in the crystal lattice of a compound, similar to the energy that would be delivered if the element ions were produced together from infinity.
ِAnswer:
1- The molarity of HCOOH = 9.515 M.
2- The mole fraction of HCOOH = 0.18.
Explanation:
<em>1- The molarity of HCOOH:</em>
- We can calculate the molarity of HCOOH using the relation:
M = (10pd)/molar mass.
p is the percent by mass of HCOOH = 35.9 %.
d is the specific gravity of HCOOH = 1.22 g/cm³.
Molar mass of HCOOH = 46.03 g/mol.
∴ M = (10pd)/molar mass = (10)(35.9 %)(1.22 gcm³) / (46.03 g/mol) = 9.515 M.
<em>2- The mole fraction of HCOOH:</em>
- We can suppose that we have a 100 g solution, that contains 35.9 g of HCOOH and 64.1 g of water.
<em>The mole fraction of HCOOH = (no. of moles of HCOOH) / (no. of moles of HCOOH + no, of moles of water).</em>
no. of moles of HCOOH = mass / molar mass = (35.9 g)/(46.03 g/mol) = 0.78 mol.
no. of moles of water = mass / molar mass = (64.1 g)/(18.0 g/mol) = 3.56 mol.
- The mole fraction of HCOOH = (no. of moles of HCOOH) / (no. of moles of HCOOH + no, of moles of water) = (0.78 mol) / (0.78 mol + 3.56 mol) = 0.18.
Answer:
coordination number
Explanation:
Coordination number -
In a crystal lattice , the number of atoms that are surrounded to a particular atom , is referred to as the coordination number of the crystal.
In the field of crystallography and chemistry , it is also called the ligancy.
In coordination chemistry , the number of ligands attached to the central metal atom is also known as the coordination number of the coordination compound.
Hence, from the given statement of the question,
The correct term is coordination number.