The ions of Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
The periodic table is a systematic arrangement of elements in order of their atomic numbers into a set of 8 columns each called groups and a set of 7 rows each called a period.
Elements are arranged in different groups according to the number of Valence electrons they have.
- For instance, elements in the group I of the periodic table are highly electropositive and as such are highly reactive.
The same is evident in group 7 elements are highly electronegative and have high electron affinity and as such are unstable and reactive.
- However, Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
Consequently, the <em>Noble gases ion</em> has a stable Valence electron configuration.
Read more:
brainly.com/question/5336231
Answer: The volume of the balloon up there is 6.192 L.
Explanation:
Given:
= 1.80 L,
= 785 mm Hg (mm Hg = 0.00131579) = 1.032 atm
= 0.300 atm,
= ?
Formula used to calculate volume is as follows.

Substitute the value into above formula as follows.

Thus, we can conclude that the volume of the balloon up there is 6.192 L.
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?