Answer : The value of
for
is
.
Solution : Given,
Solubility of
in water = 
The barium carbonate is insoluble in water, that means when we are adding water then the result is the formation of an equilibrium reaction between the dissolved ions and undissolved solid.
The equilibrium equation is,

Initially - 0 0
At equilibrium - s s
The Solubility product will be equal to,
![K_{sp}=[Ba^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)

![[Ba^{2+}]=[CO^{2-}_3]=s=4.4\times 10^{-5}mole/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO%5E%7B2-%7D_3%5D%3Ds%3D4.4%5Ctimes%2010%5E%7B-5%7Dmole%2FL)
Now put all the given values in this expression, we get the value of solubility constant.

Therefore, the value of
for
is
.
Answer:
Limiting - Na Excess - Cl2
Explanation:
Answer:
0.55mL of carbon tetrachloride
Explanation:
CH4(g) + 2Cl2(g) -------> CCl4(g) + 2H2(g)
From the balanced reaction equation
44800mL of chlorine produces 22400 ml of carbon tetrachloride
If 1.1mL of chlorine were consumed, volume of carbon tetrachloride= 1.1×22400/44800
=0.55mL of carbon tetrachloride
Note: 1 mole of a gas occupies 22.4L volume or 22400mL