Answer:
V = 19m/s
Explanation:
Given the following data;
Initial velocity, U = 4m/s
Acceleration, a = 0.5m/s²
Time, t = 30 seconds
To find the final velocity, we would use the first equation of motion;
V = U + at
Where;
V is the final velocity.
U is the initial velocity.
a is the acceleration.
t is the time measured in seconds.
V = 4 + 0.5*30
V = 4 + 15
V = 19m/s
Therefore, his final velocity is 19 meters per seconds.
Answer:
4.0
Explanation:
The following data were obtained from the question:
Force (F) = 20 N
Mass (m) = 5 kg
Acceleration (a) =.?
Force is simply defined as the product of mass and acceleration. Mathematically, it is expressed as
Force (F) = mass (m) x acceleration (a)
F = ma
With the above formula, we can obtain th acceleration of the body as follow:
Force (F) = 20 N
Mass (m) = 5 kg
Acceleration (a) =.?
F = ma
20 = 5 x a
Divide both side by 5
a = 20/5
a = 4 m/s²
Therefore, the value that will complete the last cell in the question above is 4.
Answer:
The Kinetic energy and mass are _directly_ proportional.
Explanation:
We know that Kinetic Energy is basically termed as the capacity of a body to do work.
Kinetic energy is often used to associate with moving objects, therefore, K.E is normally termed as the energy of motion.
The formula of K.E of an object of mass and velocity is defined
K.E = 1/2mv²
From the formula, it is clear that K.E is directly proportional to its mass and also directly proportional to the square of its velocity.
For example,
If A toy plane with a mass of 10 kg is flying at 20 m/s. Its K.E will be:
K.E = 1/2mv²
= 1/2(10)(20)²
= 1/2(10)(400)
= 5(400)
= 2000 J
Now, let suppose, if we double the mass of a toy plane i.e.
m = 20 kg
so
K.E = 1/2mv²
= 1/2(20)(20)²
= 1/2(20)(400)
= 10(400)
= 400 J
Therefore, the K.E is doubled when doubled the mass.
Therefore, the Kinetic energy and mass are _directly_ proportional.
Explanation:
1) Radar uses radio waves, which are a type of electromagnetic energy. Sonar uses the echo principle by sending out sound waves underwater or through the human body to locate objects. Sound waves are a type of acoustic energy. Because of the different type of energy used in radar and sonar, each has its own applications.
2)Radar systems operate using radio waves primarily in air, while sonar systems operate using sound waves primarily in water (Minkoff, 1991). Despite the difference in medium, similarities in the principles of radar and sonar can frequently result in technological convergence.