Most rocks that we encounter in our normal everyday lives are sedimentary rocks. Sedimentary rocks are rocks that have been worn down gradually over long periods of time. Because it takes very long periods of time (couple decades) for these rocks to change, it often seems as if they don't change at all, when in reality the change is too small for us to realize it!
If you start with 40.0 grams of the element at noon, 10.0 grams
radioactive element will be left at 2 p.m. The correct answer between
all the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
I want to say A only... Hope I helped!!
Answer: D. 19.9 g hydrogen remains.
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
1 mole of
require 1 mole of
Thus 0.0787 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product and
acts as the excess reagent. (10.0-0.0787)= 9.92 moles of
are left unreacted.
Mass of
Thus 19.9 g of
remains unreacted.
Answer:
pH ≅ 4.80
Explanation:
Given that:
the volume of HN₃ = 25 mL = 0.025 L
Molarity of HN₃ = 0.150 M
number of moles of HN₃ = 0.025 × 0.150
number of moles of HN₃ = 0.00375 mol
Molarity of NaOH = 0.150 M
the volume of NaOH = 13.3 mL = 0.0133
number of moles of NaOH = 0.0133× 0.150
number of moles of NaOH = 0.001995 mol
The chemical equation for the reaction of this process can be written as:

1 mole of hydrazoic acid react with 1 mole of hydroxide to give nitride ion and water
thus the new number of moles of HN₃ = 0.00375 - 0.001995 = 0.001755 mol
Total volume used in the reaction = 0.025 + 0.0133 = 0.0383 L
Concentration of
=
= 0.0458 M
Concentration of
=
= 0.0521 M
GIven that :
Ka = 
Thus; it's pKa = 4.72




pH ≅ 4.80