Answer:
Explanation:
The energy of a photon is given by the equation
, where h is the <em>Planck constant</em> and f the frequency of the photon. Thus, N photons of frequency f will give an energy of
.
We also know that frequency and wavelength are related by
, so we have
, where c is the <em>speed of light</em>.
We will want the number of photons, so we can write

We need to know then how much energy do we have to calculate N. The equation of power is
, so for the power we have and considering 1 second we can calculate the total energy, and then only consider the 4% of it which will produce light, or better said, the N photons, which means it will be
.
Putting this paragraph in equations:
.
And then we can substitute everything in our equation for number of photons, in S.I. and getting the values of constants from tables:

Because the electrons collide with the particles inside the conductor so are therefore slowed down seen as current is the rate of flow of electrons
Answer:
f= 4,186 10² Hz
Explanation:
El sistema descrito es un pendulo de torsión que oscila con con velocidad angular, que esta dada por
w = √ k/I
donde ka es constante de torsion de hilo e I es el momento de inercia del disco
El momento de inercia de indican que giran un eje que pasa por enronqueces
I= ½ M R2
reduzcamos las cantidades al sistema SI
R= 1,4 cm = 0,014 m
M= 430 g = 0,430 kg
substituimos
w= √ (2 k/M R2)
calculemos
w = RA ( 2 370 / (0,430 0,014 2)
w = 2,963 103 rad/s
la velocidad angular esta relacionada con la frecuencia por
w =2pi f
f= w/2π
f= 2,963 10³/ (2π)
f= 4,186 10² Hz
<span>The three states of matter are the three distinct physical forms that matter can take in most environments: solid, liquid, and gas. In extreme environments, other states may be present, such as plasma, Bose-Einstein condensates, and neutron stars. Further states, such as quark-gluon plasmas, are also believed to be possible. Much of the atomic matter of the universe is hot plasma in the form of rarefied interstellar medium and dense stars.</span>