Answer:
Increased use of resources
Additional waste produced
More construction
Cutting down trees
Answer:
it is option b
Explanation:
this is because neutralisation reaction takes place only between a base and an acid.
now, in OPTION A it is a neutral and base
OPTIONB it is acid and base
OPTION C both are base
OPTION D IT IS NOT POSSIBLE
Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure
To solve this problem, we assume ideal gas so that we can
use the formula:
PV = nRT
since the volume of the flask is constant and R is
universal gas constant, so we can say:
n1 T1 / P1 = n2 T2 / P2
1.9 mol * (21 + 273 K) / 697 mm Hg = n2 * (26 + 273 K) /
841 mm Hg
<span>n2 = 2.25 moles</span>
<span>You can find
the number of moles in equilibrium if you got the chemical reaction correctly. Make
sure that you got the exact chemical formula of the substance that is reacting
and the yielded product. If you got them, balance the chemical reaction. If the
chemical reaction is balanced, the system is in equilibrium. You can find the
number of moles in equilibrium at the coefficients of the chemical substances
you are balancing. For example, N2 + 3H2 -> 2NH3. The number of moles of N2
is 1, H2 is 3 and NH3 is 2.</span>