Firstly the limiting reactant should be identified. Limiting reactant is the reactant that is in limited supply, the amount of product formed depends on the moles present of the limiting reactant.
the stoichiometry of x to y = 1:2
1 mole of x reacts with 2 moles of y
if x is the limiting reactant, there are 3 moles of x, then 6 moles of y should react, however there are only 4 moles of y. Therefore y is the limiting reactant and x is in excess.
4 moles of y reacts with 2 moles of x
since there are 3 moles of x initially and only 2 moles are used up, excess amount of x is 1 mol thats in excess.
Answer:
The increasing order of conductivity is O< Ge< Mn.
Explanation:
Electrical conductivity is defined as the measure of the ability of a material to conduct electrical current through it. The conductivity depends on the atomic and molecular structure of the material.
Metals are good conductors because they have a structure with many electrons with weak bonds, and this allows their movement instead non-metals have between four and eight valence electrons, which lack this tendency.
The conductivity increases in the periodic table from top to bottom and from right to left.
oxygen is a nonmetal therefore it is a bad conductor.
Germanium is a metalloid whose conductivity is greater than a nonmetal and worst than a metal.
Manganese is a metal,in this case, it is a good conductor.
Answer:
true, they both have different types of DNA.
Answer:
C. spontaneous at all temperatures
Explanation:
The spontaneity of reaction is determined by the sign of the gibbs free energy.
A negative sign denotes that the reaction is spontaneous, positive sign means the reaction is not spontaneous.
From the question;
ΔS° = +253 J/K
ΔH° = -125 kJ/mol
ΔG = ΔH° - TΔS°
From the data given, the condition in which we can obtain a negative value of G, is at any value of T.
For any value of T, G would always be a negative value.
This means the correct option is option C.