Answer:
m1=914.9kg
m2=604.9kg
m3=864.75kg
Explanation
I think we are suppose to find the mass of the crate.
The effective force that moves the body in positive x direction is 3615N
ΣFx = Σma
Then Fx=3615N
Then the masses be m1, m2 and m3
Then,
ΣF = Σ(ma)
3615=(m1+m2+m3)a
Given that a=1.516
The masses are
m1+m2+m3=, 2384.56. Equation 1
Between mass 1 and mass 2 is, F12=1387.
The effective force that pull mass 1 is 1387.
F12=m1 ×a
Therefore,
m1=F12/a
m1=1387/1.516
m1=914.9kg.
The effective force that pulls crate 1 and crate 2 is F23
F23=(m1+m2)a
Therefore
2304=(m1+m2)a
Therefore, since a=1.516
m1+m2=2304/1.516
m1+m2=1519.8kg
Since m1=914.9kg
So, m2=1519.8-m1
m2=1519.8-914.9
m2=604.9kg
Also from equation 1
m1+m2+m3=2384.56
Since m1=914.9kg and m2=604.9kg
Then, m3=2384.56-604.9-914.9
m3=864.75kg
Could you supply u with some answer choices please?
Answer:
The answer is convection.
Explanation:
There are three types of heat transfer: conduction, convection and radiation.
- Conduction occurs when two objects touch each other and transfer heat.
- Convection occurs when an object heats its surrounding fluid (like air, or water) and, since the hot fluids are less dense than the cold ones, they go up. So convection is a type of heat transfer that usually goes from down to up.
- Radiation occurs when objects emanate heat in the form of electromagnetic waves that propagates in all directions.
So in this case, when the marshmallow is above the fire, it is exposed to convection, which does not occur when it is on the side of the fire.
Answer:
Fx = 32.14 [N]
Fy = 38.3 [N]
Explanation:
To solve this problem we must decompose the force vector, for this we will use the angle of 50 degrees measured from the horizontal component.
F = 50 [N]
Fx = 50*cos(50) = 32.14 [N]
Fy = 50*sin(50) = 38.3 [N]
We can verify this result using the Pythagorean theorem.
![F = \sqrt{(32.14)^{2}+ (38.3)^{2}} \\F = 50 [N]](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7B%2832.14%29%5E%7B2%7D%2B%20%2838.3%29%5E%7B2%7D%7D%20%5C%5CF%20%3D%2050%20%5BN%5D)
From the diagram The value of cos C × sin A =
<h3>Determine the numerical value of cos C × sin A</h3>
First step : determine the values of cos C and sin A
cos C = adjacent / hypotenuse
= a / b
=
= √3/2
sin A = sin 60⁰
= √3/2
Therefore the numerical value of cos C * sin A = 
In conclusion From the diagram The value of cos C × sin A =
Learn more about right angle : brainly.com/question/24323420
#SPJ1