Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
Answer:-
2328.454 grams
Explanation:-
Volume V = 18.4 litres
Temperature T = 15 C + 273 = 288 K
Pressure P = 1.5 x 10^ 3 KPa
We know universal Gas constant R = 8.314 L KPa K-1 mol-1
Using the relation PV = nRT
Number of moles of oxygen gas n = PV / RT
Plugging in the values
n = (1.5 x 10^3 KPa ) x ( 18.4 litres ) / ( 8.314 L KPa K-1 mol-1 x 288 K)
n = 11.527 mol
Now the balanced chemical equation for this reaction is
2KNO3 --> 2KNO2 + O2
From the equation we can see that
1 mol of O2 is produced from 2 mol of KNO3.
∴ 11.527 mol of O2 is produced from 2 x 11.527 mol of KNO3.
= 23.054 mol of KNO3
Molar mass of KNO3 = 39 x 1 + 14 x 1 + 16 x 3 = 101 grams / mol
Mass of KNO3 = 23.054 mol x 101 gram / mol
= 2328.454 grams
The pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
<h3>What is pressure?</h3>
Pressure is the force exerted by any object on another object.
Given that, a and b separate 1 liter containers and exert pressure of 2 atm and 3 atm respectively.
When both gases a and b exert together, the pressure then
2 atm + 3 atm = 5 atm.
Thus, the pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
Learn more about pressure
brainly.com/question/12977546
#SPJ4