Answer:

Explanation:
given.
magnification(m) = 400 x
focal length (f_0)= 0.6 cm
distance between eyepiece and lens (L)= 16 cm
Near point (N) = 25 cm
focal length of the eyepiece (f_e)= ?
using equation





True
~Nightcore
Hope this helped
We can solve for the acceleration by using a kinematic equation. First we should identify what we know so we can choose the correct equation.
We are given an original velocity of 24 m/s, a final velocity of 0 m/s, and a time of 6 s. We and looking for acceleration (a) in m/s^2.
The following equation has everything we need:

So plug in the known values and solve for a:
0 = 24 + 6a
-24 = 6a
a = -4 m/s^2
Density = mass/volume
= 4300/10000
= 0.43 g/mL.
Therefore density of liquid propane is 0.43 g/mL.
Hope this helps!
Answer:
further tightening is required.
Explanation:
The beat created / sec = difference of frequencies
Initial beat heard = 2
so difference of frequencies = 2
after tightening beat heard = 1
difference of frequencies decreases because frequency of tuning fork was higher than piano sound.
on further tightening difference decreases because tightening increases the frequency of piano hence further tightening is required for resonance.