Answer:
Velocity = Distance Covered÷Time Taken
Velocity = 4000÷8
V = 500
Answer:
At equilibrium:
[H2] = 0.005 M
[Br2] = 0.105 M
[HBr] = 0.189 M
Explanation:
H2(g) + Br2(g) ⇄ 2HBr
an "x" value will be used from reactant to produced "2x"
so at equilibrium:
[H2] = 0.1 - x
[Br2] = 0.2 - x
[HBr] = 2x
we know that Kc=[HBr]²/[H2][Br2]
Thus 62.5 = (2x)²/(0.1-x)(0.2-x)
this generate a quadratic equation: 58.5x² - 18.75x + 1.25 = 0
the x₁ = 0.23 x₂ = 0.09457
we pick 0.09457 because the two reactants can not make more than what they have. x₁ is higher than both initial reactant concentration
Then we substitute the "x₂" value at equilibrium:
[H2] = 0.1-0.09457 = 0.005 M
[Br2] = 0.2-0.09457 = 0.105 M
[HBr] = 2*0.09457 = 0.189 M
Answer:
Try looking back at what to do and reading back through it to understand it.
Explanation:
Answer:
Br2?? I think I tried looking it up on quizlet but it didnt work
Answer:
0.95 L
Explanation:
Step 1: Given data
Concentration of the Mg(NO₃)₂ solution (C): 0.32 M (0.32 mol/L)
Mass of Mg(NO₃)₂ (solute): 45 g
Step 2: Calculate the moles corresponding to 45 g of Mg(NO₃)₂
The molar mass of Mg(NO₃)₂ is 148.33 g/mol.
45 g Mg(NO₃)₂ × 1 mol Mg(NO₃)₂ /148.33 g Mg(NO₃)₂ = 0.303 mol Mg(NO₃)₂
Step 3: Calculate the volume of solution that contains 0.303 moles of Mg(NO₃)₂
The concentration of the solution is 0.32 M, that is, there are 0.32 moles of Mg(NO₃)₂ per liter of solution.
0.303 mol Mg(NO₃)₂ × 1 L Solution / 0.32 mol Mg(NO₃)₂ = 0.95 L