Moles of gas = 0.369
<h3>Further explanation</h3>
Given
P = 2 atm
V = 5.3 L
T = 350 L
Required
moles of gas
Solution
Ideal gas Law

Avogadro's law : at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
moles of O₂ = 45% x 0.369 = 0.166
moles of Ar = 12% x 0.369 = 0.044
moles of N = 43% x 0.369 = 0.159
In a heterogeneous mixture the materials are mixed together and will be easily separated. The correct option among all the options that are given in the question is the second option or option "b". An example of a heterogeneous mixture is a bowl of colored candies. I hope the answer helps you.
We first calculate the energy contained in one photon of this light using Planck's equation:
E = hc/λ
E = 6.63 x 10⁻³⁴ x 3 x 10⁸ / 590 x 10⁻⁹
E = 3.37 x 10⁻²² kJ/photon
Now, one mole of atoms will excite one mole of photons. This means that 6.02 x 10²³ photons will be excited
(3.37 x 10⁻²² kJ/photon) x (6.02 x 10²³ photons / mol)
The energy released will be 202.87 kJ/mol
Those are types of water on a pH scale 7.0 and above are alkili water and anything under that is acidic