1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
8

There are four main goals of an HVAC system. Name the goals and describe their purpose

Engineering
1 answer:
nikitadnepr [17]3 years ago
8 0

Answer:

The summary of the given question is summarized throughout the explanation segment below.

Explanation:

<u>The goals of the HVAC system are as follows</u>:

  • The greatest approach to enhance comfort in whatever commercial facility is simply to establish full management.
  • To encourage extremely effective centralized air conditioning operations they must be connected.
  • Comfort would be crucial for companies information about the moment of the year.
  • Every government is working regarding cost reduction, therefore commercial HVAC systems may enable you to achieve such goals.

<u>Purpose of HVAC systems</u>:

The atmosphere wherein it operates is controlled by someone with an HVAC system, the same maximum or minimum temperature of a space is controlled thru all the air conditioning.

You might be interested in
PLEASE HELP ME!!!!!! IM LOW ON POINTS BUT I NEED SOME HELP, QUICK!!! POINTS FOR HELPFUL ANSWERS + BRAINLIEST!!!!!
meriva

Answer:

Kitchen sinks can be clogged for a few reasons, food hair, and other things. Overtime, buildup of these things lead to clogging.

A few methods to fix clogging are, baking soda mixture, plunging, and boiling water.

The first method, baking soda mixture, what you do is you pour a cup of baking soda and vinegar down the drain, and place a rubber stopper to cover the drain opening. Wait 10 or more minutes, and take out the stopper, and run hot tap water until it's unclogged.

The second method is plunging. Make sure the sink has enough water to submerge the plunger, and start plunging. While you are plunging, maintain a good seal to get the best results. This usually works, but sometimes it doesn't.

The last method is boiling water. Pour boiling water into the drain, then after a while, the clogged drain should unclog, if it doesn't repeat the process until necessary.

Explanation:

8 0
3 years ago
Technician A says that weld-through primer can be removed from the immediate weld area to improve weld quality. Technician B say
lisabon 2012 [21]

Answer:

83737373777473737373738388383838

4 0
3 years ago
Biomedical, electrical and civil engineering essay
ArbitrLikvidat [17]

Answer:

7th A good time for you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my

3 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
4 years ago
Consider a single crystal oriented such that the slip direction and normal to the slip plane are at angles 42.7° and 48.3°, resp
icang [17]

Answer:

A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

Explanation:

5 0
3 years ago
Other questions:
  • Intravenous infusions are usually driven by gravity by hanging the bottle at a sufficient height to counteract the blood pressur
    11·1 answer
  • If the specific surface energy for magnesium oxide is 1.0 J/m2 and its modulus of elasticity is (225 GPa), compute the critical
    7·1 answer
  • What is a "gob" as described in the glass making process?
    9·1 answer
  • For a refrigerator, COP&lt;1 a) True b) False
    14·1 answer
  • In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetn
    11·1 answer
  • A spherical interplanetary probe of 0.5-m diameter contains electronics that dissipate 150 W. If the probe surface has an emissi
    11·1 answer
  • Ben is an aeronautical engineer who helps build rockets. What talent might help ben in his career?
    14·1 answer
  • 2.13 LAB: Expression for calories burned during workout
    5·1 answer
  • Name three things you can find with a level in construction and explain why they are Important ​
    12·1 answer
  • If the tank is designed to withstand a pressure of 5 MPaMPa, determine the required minimum wall thickness to the nearest millim
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!