Velocity is defined by rate of change in the position
which we can also write as

while acceleration is defined as rate of change in velocity

so acceleration and velocity both are rate of change in position and rate of change in velocity with respect to time respectively
out of all above statement the correct answer must be
<u>Acceleration equals change in velocity divided by time. </u>
Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch
Answer:
1/3 the distance from the fulcrum
Explanation:
On a balanced seesaw, the torques around the fulcrum calculated on one side and on another side must be equal. This means that:

where
W1 is the weight of the boy
d1 is its distance from the fulcrum
W2 is the weight of his partner
d2 is the distance of the partner from the fulcrum
In this problem, we know that the boy is three times as heavy as his partner, so

If we substitute this into the equation, we find:

and by simplifying:

which means that the boy sits at 1/3 the distance from the fulcrum.