Answer:
v₁ = 37.5 cm / s
Explanation:
For this exercise we can use that angular and linear velocity are related
v = w r
in the case of the spool the angular velocity for the whole system is constant,
They indicate the linear velocity v₀ = 25.0 cm / s for a radius of r₀ = 1.00 cm,
w = v₀ /r₀
for the outside of the spool r₁ = 1.5 cm
w = v₁ / r₁1
since the angular velocity is the same we set the two expressions equal
v1 =
let's calculate
v₁ =
v₁ = 37.5 cm / s
<span>As a car drives with its tires rolling freely without any slippage, the type of friction acting between the tires and the road is kinetic friction.
We exert force to move the object from rest and in this case, static friction works. But, when the object comes in motion, then kinetic friction works. Here, since the car is driving without slipping means, kinetic friction acts on it. Its also called sliding or dynamic friction.</span>
Answer:
the displacement of the object is 5 units
Explanation:
The computation of the displacement of the object is shown below:
= Move to the right + move to the right - move to the left
= 6 units + 3 units - 4 units
= 9 units - 4 units
= 5 units
Hence, the displacement of the object is 5 units
Just find the density of every metal and select the one with a density of 2.71 g/cm³ . This is:
Metal 1
ρ = m/V
ρ = 22.1 g / 3 cm³
ρ = 7.367 g / cm³
Metal 2
ρ = m/V
ρ = 42 g / 4 cm³
ρ = 10.5 g / cm³
Metal 3
ρ = m/V
ρ = 9.32 g / 5 cm³
ρ = 1.864 g / cm³
Metal 4
ρ = m/V
ρ = 8.13 g / 3 cm³
ρ = 2.71 g / cm³
<h2>R / Metal 4 was selected.</h2>