Answer:
<em>The pH of the solution is 7.8</em>
Explanation:
The concentration of the solution is 0.001M and the dye could be in its protonated and deprotonated forms. If the concentration of the protonated form [HA] is 0.0002 M the concentration of the deprotonated form will be the subtraction between the concentration of the bye and the concentration of the protonated form:
[A-] = 0.001M - 0.0002M = 0.0008M
Also, the Henderson-Hasselbalch equation is
this equation shows the dependency between the pH of the solution, the pKa and the concentration of the protonated and deprotonated forms. Thus, replacing in the equation
I would say the answer is A.
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
Answer:
Metallic structure
Explanation:
They have a high melting point due to the strong forces of attraction between the positive ions (cations) and the delocalised electrons. Moreover, they conduct electricity due to the sea of delocalised electrons.
<em>[Extra: It could be an ionic compound since they also have a high melting point, however they only conduct electricity in liquid or aqeouus state.]</em>
<span>Based on your information 1000 times greater than pH 13 is the best I can come up </span>with.