1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
5

A student must determine how the mass of a block affects the period of oscillation when the block is attached to a vertical spri

ng. The value of the spring constant is known. The student writes the following experimental procedure.
1. Use an electronic balance to measure the mass of the block.
2. Attach the block to the vertical spring.
3. Displace the block from the system's equilibrium position to a new vertical position.
4. Release the block from rest.
5. Use a meterstick to measure the vertical displacement of the center of mass of the block from the system's equilibrium position to its maximum vertical position above the equilibrium position.
6. Use a stopwatch to measure the time it takes for the system to make ten complete oscillations.
7. Repeat the experiment for different vertical displacements and block masses.

Which of the following steps of the procedure should the student revise to make the determination? Justify your selection.

a. Step 3, because the student must specify whether the new vertical position should be above or below the system's equilibrium position.
b. Step 5, because the meterstick should be used to measure total displacement of the system from its lowest vertical position to its highest vertical position.
c. Step 6, because the stopwatch should be used only to measure the time it takes for the system to make 1 complete oscillation.
d. Step 7, because the experiment should not be repeated for different vertical displacements and block masses.
Physics
1 answer:
zysi [14]3 years ago
5 0

Answer:

the step that the student should change is step 7

Explanation:

The movement of the spring with block is a simple harmonic type movement, so the procedure proposed by the student is correct, but we must take some care.

Step 3 is important since each movement will be started with similar conditions, also if any displacement is very large we can get out of the linear approximation of Hooke's law, for which we need to know the equilibrium point, since from this point displacements will be measured.

Step 6 should be changed to measure various oscillations to find the average period and thus decrease the error in the time reading.

Step 7 is wrong since the objective of the experiment is to analyze the effect of different masses in the period of oscillation and this step prevents this objective from being carried out.

In conclusion, the step that the student should change is step 7

You might be interested in
The dome of a Van de Graaff generator receives a charge of 0.00011 C. The radius of the dome is 5.2 m. Find the strength of the
wel

Answer:

Answer:

Explanation:

Given that

K=8.98755×10^9Nm²/C²

Q=0.00011C

Radius of the sphere = 5.2m

g=9.8m/s²

1. The electric field inside a conductor is zero

εΦ=qenc

εEA=qenc

net charge qenc is the algebraic sum of all the enclosed positive and negative charges, and it can be positive, negative, or zero

This surface encloses no charge, and thus qenc=0. Gauss’ law.

Since it is inside the conductor

E=0N/C

2. Since the entire charge us inside the surface, then the electric field at a distance r (5.2m) away form the surface is given as

F=kq1/r²

F=kQ/r²

F=8.98755E9×0.00011/5.2²

F=36561.78N/C

The electric field at the surface of the conductor is 36561N/C

Since the charge is positive the it is outward field

3. Given that a test charge is at 12.6m away,

Then Electric field is given as,

E=kQ/r²

E=8.98755E9 ×0.00011/12.6²

E=6227.34N/C

5 0
3 years ago
The electron's velocity at that instant is purely horizontal with a magnitude of 2 \times 10^5 ~\text{m/s}2×10 ​5 ​​ m/s then ho
Lesechka [4]

Complete question:

At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10​⁵​​ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.

[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]

Answer:

The time it will take the particle to pass through point (P) again is 1.639 ns.

Explanation:

F = qvB

Also;

F = \frac{MV}{t}

solving this two equations together;

\frac{MV}{t} = qVB\\\\t = \frac{MV}{qVB} = \frac{M}{qB}

where;

m is the mass of electron = 9.11 x 10⁻³¹ kg

q is the charge of electron = 1.602 x 10⁻¹⁹ C

B is the strength of the magnetic field = 3.47 x 10⁻³ T

substitute these values and solve for t

t = \frac{M}{qB} = \frac{9.11 *10^{-31}}{1.602*10^{-19}*3.47*10^{-3}} = 1.639 *10^{-9}  \ s \ = 1.639 \ ns

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.

5 0
3 years ago
What is the ratio of escape speed from earth to circular orbital speed? ignore air resistance.
klio [65]
About 40 000 km/h
Here you go:

8 0
3 years ago
Read 2 more answers
PLZ HELP WILL GIVE BRAINLIEST
xxTIMURxx [149]

Answer:

12.7m/s

Explanation:

Given parameters:

Mass of the diver = 77kg

Height  = 8.18m

Unknown:

Final velocity  = ?

Solution:

To solve this problem, we use one of the motion equations.

            v²  = u² + 2gh

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity

h is the height

             v² = 0² + (2 x 9.8 x 8.18)

             v² = 160.3

             v = 12.7m/s

7 0
3 years ago
What are the four most important characteristics of an electric circuit?
kozerog [31]

Answer:

an energy source (AC or DC), a conductor (wire), an electrical load (device), and at least one controller (switch).

Explanation:

mark as brainliest please

4 0
2 years ago
Read 2 more answers
Other questions:
  • Find the power required to give a brick 60 j of potential energy in a time of 3.0 s .
    8·1 answer
  • You are driving at the speed of 33.4 m/s (74.7296 mph) when suddenly the car in front of you (previously traveling at the same s
    8·1 answer
  • A street light is at the top of a 13.0 ft. tall pole. A man 6.3 ft tall walks away from the pole with a speed of 3.5 feet/sec al
    13·1 answer
  • A basketball player is running at 5.00 m/s directly toward the basket when he jumps into the air to dunk the ball. He maintains
    11·1 answer
  • Which group of stars is represented by the line image
    10·2 answers
  • Which of the following objects is NOT normally used in current space exploration?
    14·1 answer
  • Describe how two isotopes of nitrogen differ from two nitrogen ions?
    8·1 answer
  • Examples of impact printers​
    6·1 answer
  • 10. On Christmas Eve night when all the Who's are sleeping, are they still using energy? Explain this by using
    5·1 answer
  • HURRY ILL GIVE 15 POINTS
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!