<span>Given:
3,500 kilometers
Find:</span>
Years for two continents to collide = ?
<span>Solution:
We know that </span>typical motions of one plate relative to another
are 1 centimeter per year.
So first, we convert 3,500 km to cm.<span>
</span><span>
</span>
The solution would be like this for this specific problem:
1 km = 100,000 cm
3,500 km x 100,000 = 350,000,000 cm
Since we know that 1 cm = 1 year, then that means
350,000,000 cm is equivalent to 350,000,000 years.
Therefore, it would take 350 million years for two continents
that are 3500 kilometers apart to collide.
<span>
To add, </span>a phenomenon of the plate tectonics of Earth that occurs at
convergent boundaries is called the continental collision.
<span>FACTS:
|
|
It’s
that time of year again when the days are wet and cool.
The rainy
season is the best season.
Rain makes up part of Earth’s water cycle.
Water evaporates from streams, lakes, and oceans, then condensation
and
precipitation occur in the form of rain.
Precipitation in the form of
rain is better than snow.
Snow this time of year makes people gloomy.
Rain is a great boon to local farmers.
It helps their crops grow.
</span>OPINIONS:
|
<span>| It’s
that time of year again when the days are wet and cool.
The rainy
season is the best season.
Rain makes up part of Earth’s water cycle.
Water evaporates from streams, lakes, and oceans, then condensation
and
precipitation occur in the form of rain.
Precipitation in the form of
rain is better than snow.
Snow this time of year makes people gloomy.
Rain is a great boon to local farmers.
It helps their crops grow.</span>
Answer:
Mass – The single most important property that determines other properties of the star. Luminosity – The total amount of energy (light) that a star emits into space. Temperature – surface temperature, closely related to the luminosity and color of the star
Explanation:
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)