Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Answer:
answer is friction. MCQ A is answer
The force vector that has a magnitude of 12.0 N. and is oriented 60° to the left of the (y) has the followings components:
To solve this exercise the formulas and procedures we will use are:
- v(x) = v * cosine (angle)
- v(y) = v * sine (angle).
Where:
- v= magnitude of the vector
- v(x) = component of the vector on the (x) axis
- v(y) = component of the vector on the (y) axis
- angle = angle
Information about the problem:
- angle = 60º
- v = 12.0 N
- v(x)= ?
- v(y)= ?
Applying the formula of the component of the vector in the (x) axis we have:
v(x) = v * cosine (angle).
v(x) = 12.0 N * cosine (60º)
v(x) =6 N
Applying the formula of the component of the vector in the (y) axis we have:
v(y) = v * sine (angle)
v(y) = 12.0 N * sine (60º)
v(y) = 10.39 N
<h3>What is a vector?</h3>
It can be said to be a straight line described by a point (a) and (b) that has direction and sense.
Learn more about vector at: brainly.com/question/2094736
#SPJ4
Answer:
r = 9.92 mm
Explanation:
Given that,
Mass of oil drop, 
It acquires 2 surplus electrons, q = +2e 
Potential difference, V = 620 V
Thie potential difference is applied between the pair of horizontal metal plates the drop is in equilibrium.
We need to find the distance between the plates.
At equilibrium,
mg = qE
Since, E = V/r (r is distance between plates)

So, the distance between the plates is 9.92 mm.
200N is the answer (at least thats what I think)