In chemistry, if you want to express the amount of a substance out of the total amount, you express it in concentration. There are numerous units of measurement: molarity, molality, normality, mass percentages, volume percentage, or a mix of both. For this problem, the unit used for concentration is in mass percentages. The formula would be
Percentage Concentration = [(Actual Amount of Substance)/(Total amount of all substances)] * 100
Since we are given with the total mass of all the substances in the ocean and the percentage concentration, the only missing information is the actual amount of Na+ in the ocean. Substituting the values:
1.076 = (Amount of Na+ /1.8×10²¹ kg)*100
Amount of Na+ = 1.9368×10¹⁹ kg
Answer:
0.137 M NH3
Explanation:
First divide the mass of NH3 by the molar mass of NH3, and then divide by the volume to get molarity.
0.583 g / 17.031 g/mol = 0.0342 mol NH3
0.0342 mol NH3 / 0.250 L = 0.137 M NH3
<h3>Good Morning have a nice day </h3>
<h2>#itz mishika here#</h2>
Explanation:
a) HNO2(aq) = HNO3(aq) + H2O(l) +NO(g)
b) SoCl2 (l) + H2O (l) = So2(g) + 2HCl(aq)
c) CH4 (g) + 2O2(g) = Co2 (g) + 2H2O(g)
d) 3CuO(s) + 2NH3 (g) = 3Cu(s) + 3H2O (l) + N2(g)
The specific heat capacity the substance is calculated using the below formula
Q(heat) = Mc delta T
Q =1560 cal
m(mass) 312 g
delta T (change in temperature ) = 15 c
C= specific heat capacity=?
by making c the subject of the formula
c=Q/m delta T
= 1560 cal/ 312g x 15 c = 0.33 cal/g/c (answer B)