Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²
C. Amount of oxygen
The others either change but don’t decrease or they increase.
Answer:
(C). The line integral of the magnetic field around a closed loop
Explanation:
Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.
This can be written mathematically as;

is the rate of change of the magnetic flux through a surface bounded by the loop.
ΔФ = BA
where;
ΔФ is change in flux
B is the magnetic field
A is the area of the loop
Thus, according to Faraday's law of electric generators
∫BdL =
= EMF
Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.
The correct option is "C"
(C). The line integral of the magnetic field around a closed loop
Answer:
C. 10⁻³ rads
Explanation:
Here, we shall use Rayleigh's Criterion to find out the angular resolution of Cat's eye during day light. Rayleigh's Criterion is written as follows:
θ = λ/a
where,
θ = angular resolution of Cat's eye = ?
λ = wavelength = 500 nm = 5 x 10⁻⁷ m
a = slit width of eye = 0.5 mm = 5 x 10⁻⁴ m
Therefore,
θ = (5 x 10⁻⁷ m/5 x 10⁻⁴ m)
Therefore,
θ = 0.001
θ = Sin⁻¹(0.001)
θ = 0.001 rad = 1 x 10⁻³ rad
Hence, the correct answer is:
<u>C. 10⁻³ rads</u>