It should be 8 O atoms. 3O atoms in Na2S2O3 and 5O atom in 5H2O. The reason there are 5 O atoms are because the 5 in front of H2O means you multiply each atom in the compound by that number (like the distributive property). The H2 molecule becomes 10 Hydrogen atoms (5*2) and the Oxygen becomes 5 Oxygen atoms (5*1). Then you add the 5O atoms to the 3O atoms which equals 8
Explanation:
divide the objects weight by the acceleration of gravity to find the mass
Answer:
A) 3.17 g of Zn
Explanation:
Let's consider the reduction of Zn(II) that occurs in an electrolysis bath.
Zn⁺²(aq) + 2e⁻ → Zn(s)
We can establish the following relations:
- 1 min = 60 s
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant).
- When 2 moles of electrons circulate, 1 mole of Zn is deposited.
- The molar mass of Zn is 65.38 g/mol
The mass of Zn deposited under these conditions is:

Answer:
Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Initial rate of the reaction = R = 
![R = k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%20%3D%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
![4.0\times 10^5 M/s=k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=4.0%5Ctimes%2010%5E5%20M%2Fs%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
The initial rate of the reaction when concentration of hydrogen gas is doubled : R'
![[H_2]'=2[H_2]](https://tex.z-dn.net/?f=%5BH_2%5D%27%3D2%5BH_2%5D)
![R'=k\times [N_2][H_2]'^3=k\times [N_2][2H_2]^3](https://tex.z-dn.net/?f=R%27%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%27%5E3%3Dk%5Ctimes%20%5BN_2%5D%5B2H_2%5D%5E3)
![R'=8\times k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%27%3D8%5Ctimes%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)

Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.