Answer: D
Explanation: there is less light at that point.
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds
-- Starting from nothing (New Moon), the moon's shape grows ('waxes')
for half of the cycle, until it's full, and then it shrinks ('wanes') for the next
half of the cycle.
-- The moon's complete cycle of phases runs 29.53 days . . . roughly
four weeks.
-- So, beginning from New Moon, it spends about two weeks waxing until
it's full, and then another two weeks waning until it's all gone again.
-- After a Full Moon, the moon is waning for the next two weeks. So it's
definitely <em>waning</em> at <em><u>one week</u></em> after Full.
The correct statements are that the speed decreases as the distance decreases and speed increases as the distance increases for the same time.
Answer:
Option A and Option B.
Explanation:
Speed is defined as the ratio of distance covered to the time taken to cover that distance. So Speed = Distance/Time. In other words, we can also state that speed is directly proportional to the distance for a constant time. Thus, the speed will be decreasing as there is decrease in distance for the same time. As well as there will be increase in speed as the distance increases for the same time. So option A and option B are the true options. So if there is decrease in the distance due to direct proportionality the speed will also be decreasing. Similarly, if the distance increases, the speed will also be increasing.
Answer:
Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a light quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely propagating electromagnetic waves consisted of photons that are particles of light in the same sense that electrons or other massive particles are particles of matter. A beam of monochromatic light of wavelength \lambda (or equivalently, of frequency f) can be seen either as a classical wave or as a collection of photons that travel in a vacuum with one speed, c (the speed of light), and all carrying the same energy, {E}_{f}=hf. This idea proved useful for explaining the interactions of light with particles of matter.