Which part of the body system are you talking about
Answer:
1.55×10²² molecules.
Explanation:
We'll begin by calculating the number of mole in 5.32 g of pure lead (Pb). This can be obtained as follow:
Mass of Pb = 5.32 g
Molar mass of Pb = 207 g/mol
Mole of Pb =?
Mole = mass /molar mass
Mole of Pb = 5.32/207
Mole of Pb = 0.0257 mole
Finally, we shall determine the number of molecules in 0.0257 mole of Pb. This can be obtained as follow:
From Avogadro's hypothesis,
I mole of Pb contains 6.02×10²³ molecules.
Therefore, 0.0257 mole will contain = 0.0257 × 6.02×10²³ = 1.55×10²² molecules.
Therefore, 5.32 g of pure lead (Pb) contains 1.55×10²² molecules.
If sodium is burned in chlorine fuel, a compound is formed that dissolves in water. the solution be: Bright yellow mild
Chlorine is a yellow-green gas at room temperature. Chlorine has a smelly, annoying scent similar to bleach that is detectable at low concentrations. The density of chlorine gasoline is about 2.5 times extra than air, so one can reason it to initially stay near the floor in regions with little air movement.
Chlorine gasoline can be recognized by using its smelly, anxious smell, which is like the scent of bleach. The sturdy scent may additionally provide a good enough caution to human beings that they have been uncovered. Chlorine fuel appears to be yellow-green in color. Concentrations of approximately 400 ppm and past are commonly fatal over a half-hour, and at 1,000 ppm and above, fatality ensues within only some mins. A spectrum of scientific findings can be present in those uncovered to excessive tiers of chlorine.
Learn more about Chlorine here:
brainly.com/question/25190915
#SPJ1
Answer: m = 24.31 g/mol · 1.13 mol
Explanation: 2 mol HCl use 1 mol Mg.
Magnesium is used 0.5 · 2.26 mol = 1.13 mol
M(Mg) = 24.31 g/ mol
<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)