<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C
Answer:
sp3d
Explanation:
The ground state electronic configuration of tin is written as; [Kr] 5s²4d¹⁰5p². Hybridization is a concept used to explain the combination of orbitals of appropriate energy to produce suitable orbitals that could be used for bonding.
In forming the compound Snf5^ -1, we have to hybridize the following orbitals on tin; 5p, 5d and 6s orbitals. This gives us a set of sp3d hybrid hence the answer.
This is all no chemistry but the answer is C
To find the number of neutrons, subtract the number of protons from the mass number. number of neutrons=40−19=21.
Answer : The volume of
produced at standard conditions of temperature and pressure is 0.2422 L
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
![\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}](https://tex.z-dn.net/?f=%5Cfrac%7BP_1V_1%7D%7BT_1%7D%3D%5Cfrac%7BP_2V_2%7D%7BT_2%7D)
where,
= initial pressure of
gas = (740-22.4) torr = 717.6 torr
= final pressure of
gas at STP= 760 torr
= initial volume of
gas = 280 mL
= final volume of
gas at STP = ?
= initial temperature of
gas = ![25^oC=273+25=298K](https://tex.z-dn.net/?f=25%5EoC%3D273%2B25%3D298K)
= final temperature of
gas = ![0^oC=273+0=273K](https://tex.z-dn.net/?f=0%5EoC%3D273%2B0%3D273K)
Now put all the given values in the above equation, we get:
![\frac{717.6torr\times 280mL}{298K}=\frac{760torr\times V_2}{273K}](https://tex.z-dn.net/?f=%5Cfrac%7B717.6torr%5Ctimes%20280mL%7D%7B298K%7D%3D%5Cfrac%7B760torr%5Ctimes%20V_2%7D%7B273K%7D)
![V_2=242.2mL=0.2422L](https://tex.z-dn.net/?f=V_2%3D242.2mL%3D0.2422L)
Therefore, the volume of
produced at standard conditions of temperature and pressure is 0.2422 L