Answer:
New volume, v2 = 0.8L
Explanation:
<u>Given the following data;</u>
Original Volume = 2L
Original Temperature = 280K
New Temperature = 700K
To find new volume V2, we would use Charles' law.
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles is given by;
Making V2 as the subject formula, we have;


V2 = 0.8L
Therefore, the volume of the gas after it is heated is 0.8L.
Force=A×M
10m/s×0.20kg
=2Newton
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Answer:
A) Increases by a factor of 2
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Given that mass, m = 2m
Substituting into the equation, we have;
K.E = ½mv²
K.E = ½*2mv²
Cross-multiplying, we have;
2K.E = 2mv²
Hence, if the mass of an object increases by a factor 2, kinetic energy is increased by a factor of 2.
Answer:
A. 4148 J/K/Kg
B. 4148 J/K/L
Explanation:
A. Heat capacity per unit mass is known as the specific heat capacity, c.
C = Heat capacity/mass(kg)
C = (523 J/K) / 0.125 Kg = 4148 J/K/Kg
B. Volume of water = mass/density
Density of water = 1 Kg/L
Volume of water = 0.125 Kg/ 1Kg/L
Volume of water = 0.125 L
Heat capacity per unit volume = (523 J/K) / 0.125 L
Heat capacity per unit volume = 4148 J/K/L