Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
Answer:
Option B is the right answer.
Answer:
x = 27.3 m
Explanation:
This is a projectile launching exercise, let's start by looking for the time it takes for the rock to reach the height of the window.
Let's use trigonometry to find the velocities of the rock
sin 40 =
/ v
cos 40 = v₀ₓ / v
v_{oy}= v sin 40
v₀ₓ = v cos 40
v_{oy} = 30 sin 40 = 19.28 m / s
v₀ₓ = v cos 40
v₀ₓ = 30 cos 40 = 22.98 m / s
we look for the time
= v_{oy}^2 - 2 g y
v_{y}^2 = 19.28 2 - 2 9.8 16 = 371.71 - 313.6 = 58.118
v_{y} = 7.623 m / s
we calculate the time
v_{y} = v_{oy} - gt
t = (v_{oy} - v_{y}) / g
t = (19.28 -7.623) / 9.8
t = 1,189 s
since the time is the same for both movements let's use this time to find the horizontal distance
x = v₀ₓ t
x = 22.98 1,189
x = 27.3 m
The number of protons in any element can never change.
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa