Hi There! :)
An equilibrium constant is not changed by a change in pressurea. True
b. False
False! :P
Answer: C- ecosystem
An ecosystem is a biological community in which living beings interacts with their non-living environment. An ecosystem consists of abiotic ( non-living factors like water, sunlight, wind and soil) and biotic factors such as plants and animals. Ecosystem allows not only the interaction of abiotic and biotic factors but it favors the interaction between the living species. For example animals are dependent upon plants so as to derive their food. The coexistence of organisms favors the diversity of land forms on earth.
Communities of organisms coexist in organized, balanced ecosystems.
Torque acting dowward = 6 x 0.5 = 3 Nm
Torque acting to the right = 5 x 1 = 5 Nm
5 - 3 = 2 Nm
inertia = 1/2 mr^2
0.5 x 10 x 1^2 = 5 kg-m^2
2/5 = alpha = 0.4 rad /s^2
Hope this helps
Answer:
From the question we are told that
The length of the rod is 
The speed is v
The angle made by the rod is 
Generally the x-component of the rod's length is

Generally the length of the rod along the x-axis as seen by the observer, is mathematically defined by the theory of relativity as

=> ![L_xo = [L_o cos (\theta )] \sqrt{1 - \frac{v^2}{c^2} }](https://tex.z-dn.net/?f=L_xo%20%20%3D%20%20%5BL_o%20cos%20%28%5Ctheta%20%29%5D%20%20%5Csqrt%7B1%20%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D)
Generally the y-component of the rods length is mathematically represented as

Generally the length of the rod along the y-axis as seen by the observer, is also equivalent to the actual length of the rod along the y-axis i.e
Generally the resultant length of the rod as seen by the observer is mathematically represented as

=> ![L_r = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%5B%20%28L_o%20cos%28%5Ctheta%29%20%5B%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%5C%20%5C%20%5D%5E2%2B%20L_o%20sin%28%5Ctheta%20%29%5E2%29%7D)
=> ![L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%3D%20%5Csqrt%7B%20%28L_o%20cos%28%5Ctheta%29%5E2%20%2A%20%5B%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%20%5D%5E2%20%2B%20%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%28L_o%20cos%28%5Ctheta%29%20%5E2%20%5B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%5D%20%2B%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{L_o^2 * cos^2(\theta) [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}](https://tex.z-dn.net/?f=L_r%20%3D%20%20%5Csqrt%7BL_o%5E2%20%2A%20cos%5E2%28%5Ctheta%29%20%20%5B1%20-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7D%20%5D%2B%20L_o%5E2%20%2A%20sin%28%5Ctheta%29%5E2%7D)
=> ![L_r = \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }](https://tex.z-dn.net/?f=L_r%20%20%3D%20%20%5Csqrt%7B%20%5Bcos%5E2%5Ctheta%20%2Bsin%5E2%5Ctheta%20%5D-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7Dcos%5E2%20%5Ctheta%20%7D)
=> 
Hence the length of the rod as measured by a stationary observer is

Generally the angle made is mathematically represented

=> 
=>
Explanation: