Answer:
See attached picture.
Explanation:
Hello,
In this case, for the given name, you can verify the structure on the attached picture, wherein you can see verify the presence of both the ethyl and methyl radicals at the third carbon as well as the triple bond at the first carbon.
Best regards.
Answer:
<u></u>
- <em>A skeleton equation shows just the reactants and products whereas a balanced equation shows the</em><u> relative amounts of, or proportion between, reactants and products.</u>
Explanation:
The <em>skeleton equation</em> shows which <em>reactants </em>are being used and which <em>products </em>are being formed.
The reactants are shown on the left and the products are shown on the right side of the equations, separeted by an arrow.
For example, the skeleton equation to obtain water is:
From it you know that hydrogen and oxygen react to form water, yet you do not know in which ratio they do it.
Then, you balance the equation, adding the appropiate coefficients, to make the number of atoms of each kind on the reactant side equal to the number of the same kind of atoms on the product side.
This is, for the example of water, the number of hydrogen atoms on the left must equal the number of atoms of hygrogen on the right side, and the number of oxygen atoms of the left must equal the number of oxygen atoms on the right.
For the water example that is:
- 2H₂(g) + O₂(g) → 2H₂O (g)
- Showing that 2 molecuies of hydrogen (or 4 atoms) react with 1 molecule of oxygen (or 2 atoms) to produce 2 molecules of water, and that proportion (relative amounts) will always be true for that reaction.
Pure, crystalline solids have a characteristic melting point, the temperature at which the solid melts to become a liquid. The transition between the solid and the liquid is so sharp for small samples of a pure substance that melting points can be measured to 0.1oC. The melting point of solid oxygen, for example, is -218.4o<span>C.</span>
Answer:
.0562 concentration of H+
Explanation:
[H+] = 10^-ph
= 10 ^-1.25
= .0562
Answer:
20.93 g
Explanation:
From the question given above, the following data were obtained:
Heat (Q) = 3.5 KJ
Initial temperature (T₁) = 26°C
Final temperature (T₂) = 66°C
Mass (M) =?
Next, we shall convert 3.5 KJ to J. This can be obtained as follow:
1 KJ = 1000 J
Therefore,
3.5 KJ = 3.5 KJ × 1000 J / 1 KJ
3.5 KJ = 3500 J
Next, we shall determine the change in the temperature of the water. This is illustrated:
Initial temperature (T₁) = 26°C
Final temperature (T₂) = 66°C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 66 – 26
ΔT = 40 °C
Finally, we shall determine the mass of the water. This can be obtained as follow:
Heat (Q) = 3500 J
Change in temperature (ΔT) = 40 °C
Specific heat capacity (C) = 4.18 J/gºC
Mass (M) =?
Q = MCΔT
3500 = M × 4.18 × 40
3500 = M × 167.2
Divide both side by 167.2
M = 3500 / 167.2
M = 20.93 g
Therefore, the mass of the water is 20.93 g