Answer:
The answer is 1.15m.
Since molality is defined as moles of solute divided by kg of solvent, we need to calculated the moles of H2SO4 and the mass of the solvent, which I presume is water.
We can find the number of H2SO4 moles by using its molarity
C=nV→nH2SO4=C⋅VH2SO4=6.00molesL⋅48.0⋅10−3L=0.288
Since water has a density of 1.00kgL, the mass of solvent is
m=ρ⋅Vwater=1.00kgL⋅0.250L=0.250 kg
Therefore, molality is
m=nmass.solvent=0.288moles0.250kg=1.15m
The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<h3>What is the value of Van t Hoff factor?</h3>
For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
<h3>Which has highest Van t Hoff factor?</h3>
The Van't Hoff factor will be highest for
A. Sodium chloride.
B. Magnesium chloride.
C. Sodium phosphate.
D. Urea.
Learn more about van't off factor here:
<h3>
brainly.com/question/22047232</h3><h3 /><h3>#SPJ4</h3>
Increasing the pressure on a reaction involving reacting gases increases the rate of reaction. Changing the pressure on a reaction which involves only solids or liquids has no effect on the rate.