Answer:
-320 μJ.
Explanation:
Consider a point with an electrical charge of
. Assume that
is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:
.
Keep in mind that since both
and
might not be positive, the size of the electrical potential energy might not be positive, either.
For this point charge,
; (that's -8.0 microjoules, which equals to
)
.
Hence its electrical potential energy:
.
Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this
negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.
The characteristics of the velocity vector used to find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Newton's Second Law establishes a relationship between force, mass and acceleration of bodies.
<h3>Centripetal acceleration.
</h3>
In the case of circular motion there is a constant change in the direction of the velocity vector, even when its module remains constant, this change in direction points towards the center of the circle, so that the module is constant.
They indicate that the satellite is moving counterclockwise, therefore the speed must go to the left (counterclockwise) tangential to the circle.
In conclusion using the characteristics of the velocity vector we can find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Learn more about centripetal acceleration here: brainly.com/question/25243603