Answer:
The answer to your question is M = 36.49 g
Explanation:
Data
mass = 8.21 g
volume = 4.8064 L
Temperature = 200°C
Pressure = 1.816 atm
M = ?
Process
1.- Convert temperature to °K
°K = 273 + 200
°K = 473
2.- Calculate the number of moles
n = (PV)/RT
n = (1.816)(4.8064)/(0.082)(473)
n = 0.225
3.- Calculate the molar mass
M --------------- 1 mol
8.21 g ---------- 0.225 moles
M = (1 x 8.21)/0.225
M = 36.49 g
To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>
Answer:
A) The temperature at which the particles of matter are at their lowest energy points.
Explanation:
Absolute temperature refers to the lowest possible temperature. At this state, no heat energy remains in the substance; the energy of the particles are at their lowest energy points.