Answer:
A. Kinetic energy is converted to electric potential energy, and the proton moves more slowly.
Explanation:
When a moving proton is brought close to a stationary one, the kinetic energy of the moving one is converted to electric potential and the proton moves more slowly.
Kinetic energy is the energy due to the motion of a body. A moving proton will possess this form of energy.
Two protons according to coulombs law will repel each other with an electrostatic force because they both have similar charges. This will increase their electric potential energy of both of them.
Potential energy is the energy at rest of a body. As it increases, the motion of a body will be slower and it will tend towards being stationary.
Given what we know, we can confirm that doubling the distance between you and a source of radiation decreases your exposure by 75%.
<h3>How is distance related to radiation exposure?</h3>
- As expected, increasing the distance from the source of the radiation will reduce its negative effects.
- Counter-intuitively however, doubling the distance does not reduce by half, but rather reduces its effects by 3/4th.
- This is due to the fact that the radiation effects from the source are inversely proportional to the square of the distance.
- This causes the changes to be far greater than expected.
Therefore, given that the radiation is proportional to the square of the distance, instead of being of a more direct relation, we can confirm that when doubling the distance between yourself and the source of the radiation, you can reduce its effects by 3/4 or 75%.
To learn more about radiation visit:
brainly.com/question/9815840?referrer=searchResults
1) The grapefruit is in free fall, so it moves by uniformly accelerated motion, with constant acceleration

. Calling h its height at t=0, the height at time t is given by

We are told thatn when

the grapefruit hits the ground, so h(0.75 s)=0. If we substitute these data into the equation, we can find the initial height h of the grapefruit:


2) The speed of the grapefruit at time t is given by

where

is the initial speed of the grapefruit. Substituting t=0.75 s, we find the speed when the grapefruit hits the ground:
I'm sorry if this is wrong but I think it's 2.5 net
<span>The condition alone that is necessary so that the final kinetic energy of the system is zero after the collision is that the
objects must have momenta with the same magnitude but opposite directions.</span>