An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
<span>The periodic table is the most important chemistry reference there is. It arranges all the known elements in an informative array. Elements are arranged left to right and top to bottom in order of increasing atomic number. Order generally coincides with increasing atomic mass.
</span>
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that ball will reach at maximum height at
t = 3 s
now we will have

now we have


Now maximum height above ground is given as



Part b)
Height of the fence is given as



Part c)
As we know that its horizontal distance moved by the ball in 5.5 s is given as



now total time of flight is given as

so range is given as



so the distance from the fence is given as


Answer:
0.0239364 N
0.0057879 N
Explanation:
= Density of the gas
g = Acceleration due to gravity = 9.81 m/s²
V = Volume
Mass of rubber = 1.5 g
Buoyant force is given by

The buoyant force is 0.0239364 N
Net vertical force is given by

The net vertical force is 0.0057879 N