First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Answer:
8
Explanation:
1 mole = 6.02 × 10²³ atoms
? moles = 4.816 × 10²⁴ atoms.
? Moles = 4.816 × 10²⁴ ÷ 6.02 × 10²³
? Moles = 8 moles
8 moles of aluminum = 4.816 × 10²⁴
Simply mulitply the volume by the density. As we shall see, this is dimensionally consistent.
Explanation:
density
ρ
=
Mass
Volume
, and thus units of
g
⋅
m
L
−
1
are reasonable.
For this problem:
17.4
⋅
m
L
×
0.798
⋅
g
⋅
m
L
−
1
≅
14
⋅
g
but A i supposed?
<span>The concentration of pb2+ = 1.00mg/ml
Diluted Solution is 6.0 x 102 ml = 612 ml
Volume of the concentration of pb2+ is 0.054 mg/l is v
(vL)(1.00mg/ml) = (.612L)(0.054mg/l)
Volume = 0.033048L
Volume of the concentration of pb2+ is 0.054 mg/l = 33.048 ml.</span>