Answer:
maximum stress is 2872.28 MPa
Explanation:
given data
radius of curvature = 3 ×
mm
crack length = 5.5 ×
mm
tensile stress = 150 MPa
to find out
maximum stress
solution
we know that maximum stress formula that is express as
......................1
here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack
so put here all value in equation 1 we get
σm = 2872.28 MPa
so maximum stress is 2872.28 MPa
Scuze , am incercat , dat chiar nu stiu. Prefer sa nu raspund si sa scriu asta decat sa raspund gresit.❤️
Answer:
a). Work transfer = 527.2 kJ
b). Heat Transfer = 197.7 kJ
Explanation:
Given:
= 5 Mpa
= 1623°C
= 1896 K
= 0.05 
Also given 
Therefore,
= 1 
R = 0.27 kJ / kg-K
= 0.8 kJ / kg-K
Also given : 
Therefore,
= 

= 0.1182 MPa
a). Work transfer, δW = 
![\left [\frac{5\times 0.05-0.1182\times 1}{1.25-1} \right ]\times 10^{6}](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B5%5Ctimes%200.05-0.1182%5Ctimes%201%7D%7B1.25-1%7D%20%20%5Cright%20%5D%5Ctimes%2010%5E%7B6%7D)
= 527200 J
= 527.200 kJ
b). From 1st law of thermodynamics,
Heat transfer, δQ = ΔU+δW
= 
=![\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B%5Cgamma%20-n%7D%7B%5Cgamma%20-1%7D%20%5Cright%20%5D%5Ctimes%20%5Cdelta%20W)
=![\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B1.4%20-1.25%7D%7B1.4%20-1%7D%20%5Cright%20%5D%5Ctimes%20527.200)
= 197.7 kJ
Answer:
<u><em>note:</em></u>
<u><em>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</em></u>
Answer:

Explanation:
From the question we are told that:
Initial Pressure 
Initial Temperature 
Final Pressure 
Final Temperature 
Work Output 
Generally Specific Energy from table is
At initial state


With
Specific Volume 
At Final state


Generally the equation for The Process is mathematically given by

Assuming Mass to be Equal

Where



Therefore

