Answer:
351.43mL
Explanation:
To calculate the original volume of hydrogen gas in this question, the Boyle's law equation will be used. Boyle's law equation is:
P1V1 = P2V2
Where; P1 = initial pressure
V1 = initial volume
P2 = final pressure
V2 = final volume
According to this question, the P1= 1.56atm, V1 = ?, P2 = 0.73atm, V2 = 751mL
Hence;
P1V1 = P2V2
1.56 × V1 = 0.73 × 751
1.56 V1 = 548.23
V1 = 548.23/1.56
V1 = 351.43mL
Therefore, the original volume of hydrogen gas is 351.43 mL.
While staying in the same period, if we move from left to right across the period, the atomic radius decreases. The reason is, in a period the number of shells remain the same and the number of electrons and protons increase as we move across the period to the right. The increased electrons and protons attract each other with greater force and hence the atomic size decreases.
So the element on the left most will have the largest atomic radius. So the correct ans is Potassium. Potassium will have the largest atomic size among Potassium, Calcium and Scandium.
Answer:
The answer to your question is letter D. 2.02 g
Explanation:
Data
moles of Ne = 0.100
atomic mass of Neon = 20.18 g
Process
1.- Use proportions to find the answer
20.18 g of Ne ------------------ 1 mol of Ne
x ------------------ 0.1 moles
x = (0.1 x 20.18)/1
x = 2.018
2.- Consider the significant figures
0.100 has three significant figures so the answer must be 2.02 g
I got that pH=3.65 using the fact that Ka=[H⁺][A⁻]/[HA] at equilibrium. In the ice table, I stands for initial, C stands for change, and E stands for equilibrium.
I hope this helps. Let me know if anything is unclear.