The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
<h3>What is temperature?</h3>
The term temperature refers to a measure of the average kinetic energy of the molecules of body. This means that molecules that are at high temperature tend to move faster than the molecules that are at low temperature.
As such, the higher temperature of the molecules of the gas in B shows that the molecules in B are faster than those in A thus the correct statement is; "the average kinetic energy of the gas particles is greater in container B because it has a higher temperature."
Learn more about temperature:brainly.com/question/7510619
#SPJ1
Missing parts;
The picture shows two containers filled with a gas.
Two equally sized containers are shown with tight lids and each container has a thermometer. The container on the le is labeled A and the one on the right is labeled B. The thermometer inside container B shows a higher temperature than the thermometer inside container A.
Which statement is correct?
The average kinetic energy of the gas particles is greater in container A because it has a lower temperature.
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
The gas particles in both containers have the same average kinetic energy because t have the same volume.
The gas particles in both containers have the same average kinetic energy because t have equal number of particles.
Answer: Would be D. Fe and S have an ionic bond, while S and O have covalent.
Hope that helps.
Answer:
0.800 mol of O2
Explanation:
<em>Calculate the moles of oxygen produced by the reaction of 0.800mol of carbon dioxide.</em>
The balanced equation for the reaction is given as;
6CO2 + 6H2O → C6H12O6 + 6O2
From the reaction;
6 mol of CO2 produces 6 mol of O2
0.0800 mol of CO2 would produce x mol of O2
6 = 6
0.0800 = x
Solving for x;
x = 6 * 0.800 / 6
x = 0.800 mol
Answer: In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Explanation:
Answer:
[He]: 2s² 2p⁵.
[Ne]: 3s².
[Ar]: 4s² 3d¹⁰ 4p².
[Kr]: 5s² 4d¹⁰ 5p⁵.
[Xe]: 6s² 4f¹⁴ 5d¹⁰ 6p².
Explanation:
- Noble elements are used as blocks in writing the electronic configuration of other elements as they are stable elements.
He contains 2 electrons fill 1s (1s²).
So, [He] can be written before the electronic configuration of 2s² 2p⁵.
Ne contains 10 electrons fill (1s² 2s² 2p⁶).
So, [Ne] can be written before the electronic configuration of 3s².
Ar contains 18 electrons is configured as ([Ne] 3s² 3p⁶).
So, [Ar] can be written before the electronic configuration of 4s² 3d¹⁰ 4p².
Kr contains 36 electrons is configured as ([Ar] 4s² 3d¹⁰ 4p⁶).
So, [Kr] can be written before the electronic configuration of 5s² 4d¹⁰ 5p⁵.
Xe contains 54 electrons is configured as ([Kr] 5s² 4d¹⁰ 5p⁶).
So, [Xe] can be written before the electronic configuration of 6s² 4f¹⁴ 5d¹⁰ 6p².