Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
What about it do you want answered
4V is the necessary voltage to power the electrolysis of molten sodium chloride.
To create sodium metal and chlorine gas, molten (liquid) sodium chloride can be electrolyzed. A Down's cell is the name of the electrolytic cell utilised in the procedure. The liquid sodium ions in a Down's cell are converted to liquid sodium metal at the cathode. Liquid chlorine ions are oxidised to chlorine gas at the anode. Below is an illustration of the reactions and cell potentials:
oxidation:
→
+
E°= -1.36V
reduction:
→
E°= -2.71V
overall :
→
E°
= -4.07V
For this electrolysis to take place, the battery needs to supply more than 4 volts. The only means to obtain pure sodium metal is by this reaction, which also serves as a significant source of chlorine gas generation. Swimming pools and other surfaces are frequently cleaned and disinfected with chlorine gas.
Learn more about sodium chloride here;
brainly.com/question/9811771
#SPJ4
Answer: only Br2.
Justification.
In a chemical reaction the element that gains electrons experiments a reduction in its oxidation state, that is why it is said that it is reduced.
So, to know what element is being reduced you need to calculate the oxidation states of the elements involved.
Here I indicate the oxidation states of each element if the reaction putting them inside parenthesis:
Reactants side Products side
K (0) K (1+)
Br (0) Br(1-)
So, K lost one electron, increasing its oxidation statefrom 0 to 1+, meaning that it is being oxidized.
And, each atom of Br gained one electron, reducing its oxidation state from 0 to 1-, meaning it is being reduced.
Therefore, the answer is that Br2 is the substance being reduced.
The conductance of the electric current through the electrolytic solution increases with increase in concentration.
<h3>
What is electrolytic solution?</h3>
Electrolytic solutions are solutions that are capable of conducting an electric current due to presence of ions.
The current flowing in an Electrolytic solutions is calculated as;
Q = It
I = Q/t
where;
Increase in the concentration of the charges, increases the amount of charges in the solution and hence the conductance of the solutions will increase as well.
Learn more about Electrolytic solutions here: brainly.com/question/14654936
#SPJ1