<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.
An object is lifted from the surface of a spherical planet to an altitude equal to the radius of the planet.
As a result, the object's <em>mass remains the same</em>, and its <em>weight decreases</em> to 1/4 of whatever it is when the object is on the planet's surface.
Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
The distance is the total distance she walked which is 16 meters adding the 6 meters to the corner and 10 meters to her friend's apartment. Her displacement is the distance from her original starting point so you set up a triangle with side lengths of 6 and 10 and solve for the hypotenuse which gives you a displacement of 11.66 meters.