Given a steel rod:
Radius = r = 10 mm = 0.010 m.
Length L = 1 m.
Tensile Force = F = 100 kN.
Young's Modulus = Y = 2.0 &* 10¹¹ Nm⁻²
a) Stress = Force/cross sectional area
σ = F / A
= 100,000 /(π 0.010²) Pa
= 318.309 MPa
b) Y = (F/A) / (ΔL/L)
Elongation ΔL = L F / (A Y)
= L σ / Y
= 1 * 318.309 * 10⁶ / 2.0 * 10¹¹ m
= 1.591 mm
c) Percentage elongation : ΔL/L * 100 = 0.1591 %
Answer:
Mass of shot (m) = 4 kg
Explanation:
Given:
Velocity (v) = 15 m/s
Mechanical kinetic energy (K.E) = 450 J
Find:
Mass of shot (m) = ?
Computation:
Mechanical kinetic energy (K.E) = 1/2mv²
Mechanical kinetic energy (K.E) = [1/2](m)(15)²
450 = [1/2](m)(15)²
900 = 225 m
Mass of shot (m) = 4 kg
The acceleration of gravity is
9.8 m/s^2 down.
When an object falls out of a hand, its speed after 1.8s is
(9.8)x(1.8) = 17.6 m/s down.
It doesn't matter what it is, how much it weighs, or how high it was dropped from.
If it's more than 17.6 m/s, then this happened on a different, bigger planet.
If it's less than 17.6 m/s, then it must have hit something on the way down, like some air or something.
Answer:440.03 N
Explanation:
Given
horizontal component of acceleration 
vertical component of acceleration 
mass of ball =0.37 kg
Force in horizontal direction
Force in vertical direction 
Therefore net force is


|F|=440.03 N
Answer:
15 and Increasing
Explanation:
Hope this helps
Have a wonderful day and many more to come
Alexis~
~A.K.A Moon~